Mammalian and Insect Cell Metabolic Engineering for Biotechnology Applications

Michael J. Betenbaugh

Department of Chemical and Biomolecular Engineering

Johns Hopkins University

NSF Metabolic Engineering Working Group

February 6, 2004

Biotechnology & Pharmaceuticals

Mammalian cell culture

Therapeutic Proteins from Mammalian Cell Biotechnology

- 38 Commercial Proteins
 - Cancers
 - Arthritis
 - Anemia
 - Stroke and Heart Attack
 - Genetic Disorders
 - Infertility
- Sales in excess of 20 billion dollars (2001)
- Projected annual growth: 15%
- Nearly 50% of FDA Pipeline
 - With Vaccines and Gene Therapy Products

Why are mammalian cells the biotherapeutic champions?

Factors in Choosing a Production System

Mammalian

The Engineering Problem: Quality versus Yield

Essential pharmacological properties

Efficient and inexpensive production scheme

Why are mammalian cells the biotherapeutic champions?

High Quality in spite of Lower Yields

Current Approach: Quality trumps Yield

Essential pharmacological properties

Efficient and inexpensive production scheme

Question?...

Can we solve the engineering problem?

Can metabolic engineering provide high yields and high quality?

Factors in Choosing a Production System

Mammalian

(1) Can metabolic engineering improve quality of biotherapeutics from insect cells?

(2) Can metabolic engineering "humanize" biotherapeutic quality from mammalian cells?

What is "quality" and why are mammalian cells champs over insects?

- Insect-derived proteins are cleared rapidly from patients "in vivo"
- Mammalian-derived proteins have long "in vivo" circulatory lifetimes

What is the difference between insect and and mammalian products?

- ◆Identical Polypetide Structures-Insect vs. Mammals
- Different Glycosylation Patterns: Insects vs. Mammals

Glycosylation differences are the reason for lower quality of Insect-derived product versus mammalian product

Glycosylation Processing in the cell

Glycosylation Processing in the Cell

Glycosylation: Insect, Mammalian, Human

(1) Can metabolic engineering "humanize" biotherapeutics from insect cells? Quality Human **Mammalian** Evolution **Insect Yeast Bacteria**

Humanizing Insect Cell Glycosylation: Add GlcNAc and Galactose (Gal)

Engineered Insect Cells?

Glycosylation patterns from T. ni (High 5) Glycosidases **GIcNAc** Mannosidase Hexosaminidase Transferase I STOP **GIcNAc** Transferase II = Mannose = Fucose GlcNAc SialylTransferase TransferaseIII Gal Transferase = GlcNAc = Galactose Glucose = Sialic Acid

Express Mammalian Galactose Tranferase (Gal T) and N-acetylglucosamine transferase II (GlcNAc TII) in Insect Cells ? ?

Baculovirus with Mammalian GlcNAc Transferase TII (GlcNAc TII)/ target protein

N-glycan patterns?

Collaborator: Don Jarvis, Univ. of Wyoming

HPLC Analysis of Glycosylation

Glycosylation patterns from Insect Cells

GlcNAc TII/Gal T makes N-glycans more "mammalian" –fully galactosylated

Without Insect GIcNAc TII/Gal T N-glycan With GlcNAc TII/Gal T

- 1. Adds GlcNAc and Terminal Galactose
- 2. Blocks Removal of GlcNAc

```
= Fucose; = Glucose; = Galactose
= N-acetylglucosamine; = Mannose
```

Next, we must add sialic acid to insect cell glycosylation

Engineered Insect Cells

Re-Engineered Insect Cells?

Sialylation reaction requires three components:

1. Galactose-terminated Structure

2) CMP-Sialic acid-CMP-Neu5Ac (nucleotide sugar-Cytidine Monophospho-N-acetylneuraminic acid)

?

3) Sialyltransferase

But CMP-Sialic Acid is not present in Insect Cells

Can we make CMP-Sialic Acid?

Mammalian Enzymes Engineered into

✓ UDP-GlcNAc Epimerase/ ManNAc Kinase

N-Acetylmannosamine (ManNAc)

Sialic Acid Synthase (SAS)

Phosphoenyl Pyruvate (PEP)

N-acetylneuraminic Acid (NeuAc or Sialic Acid)

Recombinant Epimerase/Kinase + Sialic Acid Synthase (SAS) in Insect Cells

Can we make CMP-Sialic Acid?

Can we make CMP-Sialic Acid?

N-Acetylmannosamine (ManNAc)

Phosphoenyl Pyruvate (PEP)

N-acetylneuraminic Acid (NeuAc or Sialic Acid)

CMP-N-acetylneuraminic Acid (CMP-NeuAc)

Engineered Insect Cells make high levels of CMP-Sialic Acid:

Sialylation reaction requires three components:

1. Galactose-terminated Acceptor

2) CMP-Neu5Ac (nucleotide sugar) (Cytidine Monophospho-N-acetylneuraminic acid/Sialic Acid)

3) Sialyltransferase

Don Jarvis-Wyoming

But you have to put them all together too....

(2) Can metabolic engineering improve antibody glycosylation quality from mammalian cells?

Umana et al., Nature Biotechnol.

Humanizing Hamster&Mouse Glycosylation: Bisecting GlcNAc

Chinese Hamster Ovary (CHO) and NSO Mouse Cells

Human cells and Humanized CHO&NSO

Immune Killer Cell Binding to Fc Region of Antibody

(* Proportional to mean fluorescence by FACS analysis)

Metabolic Engineering of Glycosylation Alters Antibody Structure/Function

Effects of Bisecting GlcNAc on Therapeutic Efficacy

Antibody concentration (ng/ml)

Courtesy of P. Umana, Glycart, Inc.

Blood, 2002, Vol. 99, No. 3, pp. 754-758

Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgRIIIa

Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H.

Clinical Outcome after 12 months Rituxan® therapy		
	Objective response rate (% patients)	Molecular response rate (% patients)
Homozygous high affinity	90	83
Low affinity carrier (homozygous+heterozygous)	51	29

Conclusions

- Engineering Tradeoff: High Yields versus High Quality
 - Mammalian: Higher Quality and Lower Yields
 - Insect Cells: Lower Quality and Higher Yields
- Can Metabolic Eng. Solve the Engineering Problem?
 - High Quality & High Yield?
- Insect Cells: Higher Quality through Glycosylation Engineering
- Mammalian Cells: Improved Antibody Quality through Glycosylation Engineering

Acknowledgements

- Johns Hopkins University
 - Yuan C. Lee
 - Noboru Tomiya
 - Lee Pitts
 - Shawn Lawrence
 - Badarulhisam Abdul Rahma
 - Eric Ailor
 - FDA
 - Willie F. Vann

- University of Wyoming
 - Donald Jarvis
- Temple University
 - Karen Palter
- Human Genome Sciences
 - Timothy Coleman
 - Kathy Huddleston
 - Nam Nguyen
 - Joelle Porter
 - Dave Parmelee

NSF and NIH Metabolic Engineering Grants